

BX53M/BXFM

Серия ВХЗМ

Передовая микроскопия, простая в применении

Разработаны для промышленных целей и материаловедения

Микроскопы серии BX3M, разработанные с учетом принципа модульности, обеспечивают многофункциональность для целого ряда материаловедческих и промышленных целей. Обладая улучшенными возможностями интеграции с программным обеспечением OLYMPUS Stream, BX3M гарантирует отсутствие проблем в рабочем процессе стандартной микроскопии для пользователей, от наблюдения до составления отчетов.

Для функций, помеченных таким значком, необходимо программное обеспечение OLYMPUS Stream.

Передовая микроскопия, простая в применении

Ориентированная на пользователя

Простые принципы работы с настройками микроскопа и пошаговые инструкции облегчают пользователям внесение изменений и восстановление системных настроек.

Функциональная

ВХЗМ, изначально разработанный для традиционной промышленной микроскопии, имеет расширенные функциональные возможности, которые отвечают целому ряду сфер применения и методик осмотра.

Прецизионная оптика

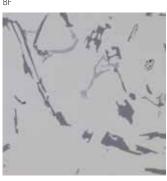
Компания Olympus имеет многолетний опыт производства качественной оптики, которая обеспечивает превосходные изображения как в окулярах, так и на мониторе.

Полностью настраиваемая

Модульная конструкция обеспечивает пользователям гибкость при создании системы, которая отвечает их конкретным нуждам.

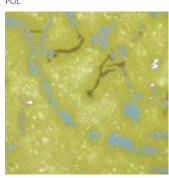
Интуитивно понятные элементы управления микроскопом: удобные и простые в использовании

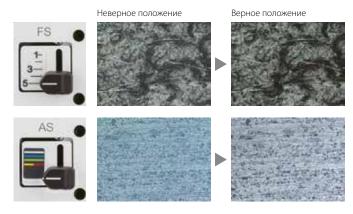
При выполнении задач по осмотру часто требуется много времени, чтобы изменить настройки микроскопа, получить изображение и провести нужные измерения, которые необходимы для удовлетворения требований к отчетности. Иногда пользователи вкладывают время и деньги в профессиональное обучение работе с микроскопом, либо работают, имея ограниченные знания обо всех возможностях микроскопа.


ВХЗМ упрощает выполнение сложных задач по микроскопии за счет удобной конструкции и простоты применения элементов управления. У пользователей есть возможность получить максимум пользы от микроскопа без необходимости углубленного обучения. Простая и удобная работа с ВХЗМ также повышает воспроизводимость за счет сведения к минимуму ошибок, связанных с человеческим фактором.

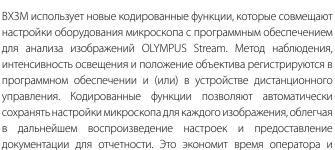
Простой осветитель: традиционные методики стали доступными

Осветитель сводит к минимуму выполнение сложных действий, которые обычно требуются во время работы с микроскопом. Ручка в передней части осветителя позволяет пользователю легко менять методы наблюдения. Оператор может быстро переключаться между наиболее часто используемыми методами наблюдения, применяемыми в микроскопии в отраженном свете, такими как от темного поля к светлому полю или к поляризованному свету, чтобы без труда переключаться между разными типами анализов. Кроме того, простое наблюдение в поляризованном свете регулируется обычным поворотом анализатора.

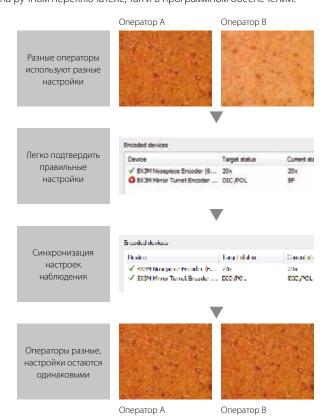




Шлифованный образец AlSi

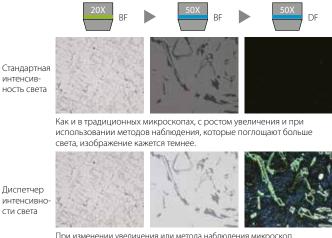

Для использования требуется слайдер DIC

Интуитивно понятные элементы управления микроскопом


Применение правильных настроек диафрагмы апертуры и поля обеспечивает хорошую контрастность изображения и в полной мере использует числовую апертуру объектива. Условные обозначения направляют пользователя к нужным настройкам с учетом метода наблюдения и используемого объектива.

Кодированное оборудование: простое восстановление настроек микроскопа

интенсивность освещения и положение объектива регистрируются в программном обеспечении и (или) в устройстве дистанционного управления. Кодированные функции позволяют автоматически сохранять настройки микроскопа для каждого изображения, облегчая в дальнейшем воспроизведение настроек и предоставление документации для отчетности. Это экономит время оператора и сводит к минимуму вероятность использования неправильных настроек. Текущие настройки наблюдения всегда четко показаны как на ручном переключателе, так и в программном обеспечении.


Деление шкалы фокусировки: быстрая фокусировка

Деление шкалы фокусировки на корпусе обеспечивает быструю фокусировку. Операторы могут ориентировочно отрегулировать фокус, не глядя на образец через окуляры, что позволяет сэкономить время при изучении образцов различной высоты.

Диспетчер интенсивности света: постоянное освещение

Во время первоначальной настройки интенсивность освещения можно отрегулировать так, чтобы оно соответствовало конкретной конфигурации оборудования кодированного осветителя и (или) кодированной головки.

При изменении увеличения или метода наблюдения микроскоп автоматически корректирует интенсивность света до нужного значения.

Простота и эргономичность эксплуатации

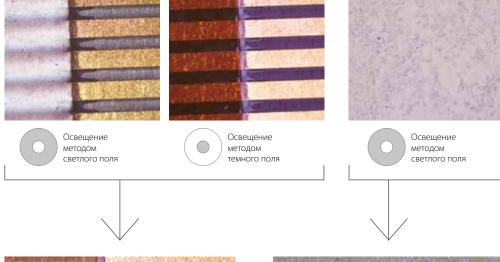
Эргономичность крайне важна для всех пользователей. Эргономичные элементы управления на устройстве дистанционного управления, которые однозначно показывают положение оборудования, подходят для пользователей как отдельного микроскопа, так и микроскопа с программным обеспечением для анализа изображений OLYMPUS Stream. Простое дистанционное управление позволяет пользователю сконцентрироваться на образце и исследовании, которое ему необходимо выполнить.

Поворот ручного Ручной переключатель переключателя механической головки

Кнопка для моментальных СНИМКОВ

Функциональные возможности для целого ряда аналитических задач и задач по осмотру

ВХЗМ поддерживает такие традиционные методы контрастирования стандартной микроскопии, как светлое поле, темное поле, поляризованный свет и дифференциально-интерференционное контрастирование. По мере разработки новых материалов многие трудности, связанные с обнаружением дефектов при помощи стандартных методов контрастирования, можно решить, используя передовые методики микроскопии, чтобы выполнять более точные и надежные осмотры. Новые методики освещения и параметры получения изображений в программном обеспечении для анализа изображений OLYMPUS Stream предоставляют пользователям больше вариантов для оценки образцов и регистрации полученных результатов. Кроме того, ВХЗМ вмещает образцы большего размера, более тяжелые и более специализированные, чем традиционные модели.

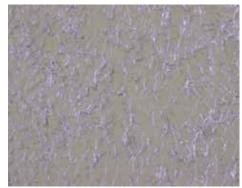

Улучшенная визуализация

Наблюдение по технологии MIX: невидимое становится видимым

Технология наблюдения MIX в ВХЗМ объединяет методы освещения светлого и темного поля. Светодиоды в слайдере MIX освещают образец методом направленного темного поля, которое похоже на традиционное темное поле, но обладает большей гибкостью. Такая комбинация светлого и направленного темного поля называется освещением MIX, и оно особенно полезно для выделения дефектов и различения выпуклых поверхностей от впадин.

Стандартная

В светлом поле свет падает прямо на образец, в то время как традиционное темное поле выделяет царапины и изъяны плоской поверхности, освещая образец сбоку от объектива.


Улучшенная

MIX — это комбинация светлого и направленного темного поля из кольца светодиодов. Светодиоды можно регулировать, чтобы выбрать направление освещения.

Полное освещение

Гибкие печатные платы

Нержавеющая сталь (марка 316) Освещен левый квадрант

Мгновенное панорамное изображение MIA: простое перемещение столика для панорамных изображений

Теперь существует возможность легко и быстро соединять изображения простым перемещением ручек XY на столике с ручным приводом; наличие столика с электроприводом не требуется. OLYMPUS Stream использует распознавание характерных структур для создания панорамного изображения, обеспечивая пользователям более широкое поле обзора в рамках одного кадра.

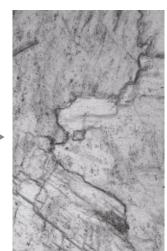
одного кадра.

EFI: создание изображений с полным фокусом

Функция расширенного фокуса (EFI) в OLYMPUS Stream фиксирует изображения образцов, высота которых выходит за глубину резкости объектива, и объединяет их, чтобы создать одно изображение, на котором все находится в фокусе. ЕFI можно запустить с помощью оси Z с ручным или электроприводом; при этом функция создает карту высот для облегчения визуализации структур. Кроме того, EFI-изображение можно сформировать в автономном режиме, с помощью приложения Stream для рабочего стола

HDR: захват как светлых, так и темных участков

При помощи расширенной обработки изображений расширенный динамический диапазон (HDR) корректирует разницу яркости на изображении, чтобы устранить блики. HDR улучшает визуальное качество цифровых изображений, помогая таким образом составлять отчеты профессионального качества.

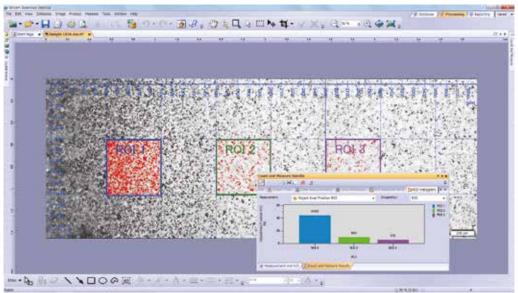


Четкое выделение темных и ярких участков с помощью HDR (Образец: баллон топливного инжектора)

Мгновенное панорамное изображение MIA монеты

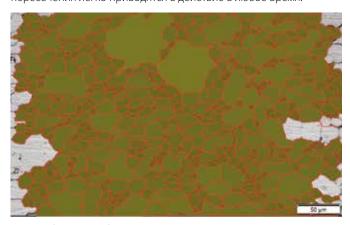
Усиление контрастности с помощью HDR (Образец: тонкослойный срез магнезита)

Расширенные измерения


Регулярные или основные измерения

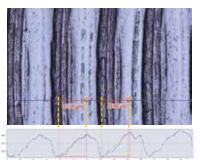
В приложении OLYMPUS Stream доступны различные измерительные функции, позволяющие пользователю легко получить полезные сведения из изображений. Для целей контроля качества и осмотра часто требуются измерительные функции на изображениях. Лицензии на OLYMPUS Stream всех уровней имеют функции интерактивного измерения, такие как расстояния, углы, прямоугольники, круги, эллипсы и многогранники. Все результаты измерений сохраняются с файлами изображений для будущей документации.

Подсчет и измерение


Обнаружение объекта и измерение распределения по размеру являются одними из наиболее важных областей применения в области цифровой визуализации. OLYMPUS Stream включает механизм обнаружения, который использует методы пороговых значений для надежного отделения объектов (например, частицы, царапины) от фона.

Подсчет и измерение

Решения в области материаловедения


Трехмерное измерение образцов

При использовании внешнего электропривода фокусировки можно легко зафиксировать EFI-изображение и вывести его в 3D. Полученные данные по высотам можно использовать для трехмерных измерений вдоль профиля или по изображению в одной проекции.

Трехмерный вид поверхности (образец, взятый из теста на определение шероховатости поверхности)

Одиночный снимок и измерение профиля в трех измерениях

Пример: обнаружение объекта и отчет по зернистости — планиметрический метод.

Улучшенная вместимость для образцов

Просмотр большего количества типов и размеров образцов

Новый столик размером 150 \times 100 мм обеспечивает большую длину хода в направлении оси X, чем предыдущие модели. Наряду с плоской конструкцией это упрощает размещение крупных или нескольких образцов на столике. В пластине столика имеются резьбовые отверстия для закрепления держателя образцов. Увеличенный размер столика обеспечивает пользователям гибкость, позволяя просматривать больше образцов с помощью одного микроскопа, что экономит полезное пространство лаборатории. Регулируемый вращающий момент столика облегчает точное позиционирование под большим увеличением в узком поле обзора.

Гибкость в отношении высоты и массы образцов

При помощи дополнительного модульного блока на столик можно устанавливать образцы высотой до 105 мм. Благодаря усовершенствованному механизму фокусировки микроскоп способен выдержать общую массу (образец + столик) до 6 кг. Это означает, что на ВХЗМ можно осматривать более крупные и тяжелые образцы, поэтому лаборатории требуется меньше микроскопов. При стратегическом размещении вращающегося держателя для шестидюймовых полупроводниковых пластин со смещением от центра пользователи могут просматривать поверхность всей пластины, просто поворачивая держатель при перемещении в рамках 100 мм диапазона перемещений. Регулировка вращающего момента столика оптимизирована, чтобы облегчить эксплуатацию, а удобная ручка упрощает поиск исследуемого участка на образце.

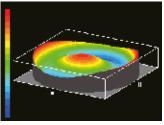
BX53MRF-S

Гибкость в отношении размера образцов

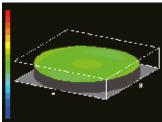
Если образцы слишком крупные для размещения на обычном столике микроскопа, основные оптические элементы, применяемые для микроскопии в отраженном свете, можно разместить в модульной конфигурации. Такую модульную систему как ВХFМ можно разместить на штативе большего размера с помощью опоры или установить на другой подходящий прибор при помощи кронштейна. Благодаря этому оператор может использовать признанные преимущества оптики компании Olympus, даже когда образцы имеют редкий размер или форму.

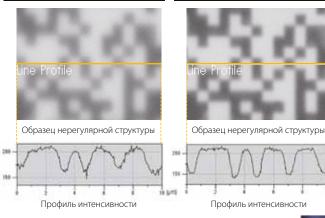
Антистатические свойства: защита электронных устройств от электростатического разряда

ВХЗМ может рассеивать ЭСР, защищая электронные устройства от статического электричества, обусловленного факторами воздействия человека или окружающей среды.


Опыт производства передовой оптики

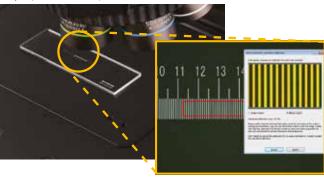
Опыт компании Olympus в разработке высококачественной оптики привел к установлению рекорда в области проверенного оптического качества и микроскопов, обеспечивающих исключительную точность измерений.

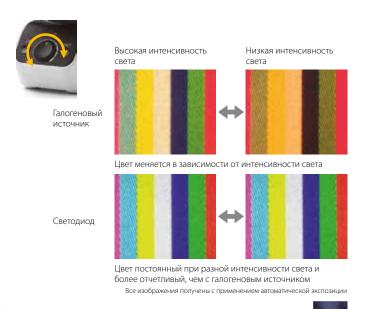

Контроль искажения волнового фронта


При использовании микроскопа для перспективных исследований или системной интеграции оптические характеристики должны быть унифицированными для всех объективов. Объективы UIS2 компании Olympus выходят за пределы традиционных нормативных показателей числовой апертуры (ЧА) и рабочего расстояния (РР), обеспечивая контроль искажения волнового фронта, что сводит к минимуму искажения, которые снижают разрешение.

Дефектный волновой фронт

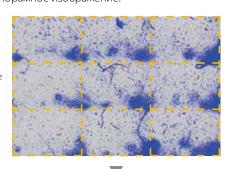
Хороший волновой фронт

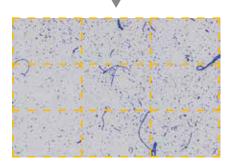



Автоматическая калибровка

цифровым микроскопам, использовании OLYMPUS приложения Stream доступна автоматическая устраняет калибровка. Автоматическая калибровка вариабельность, обусловленную воздействием человеческого фактора в процессе калибровки, что в результате обеспечивает более надежные измерения. Для автоматической калибровки применяется алгоритм, который автоматически вычисляет правильную калибровку из среднего значения по нескольким точкам измерения. Это сводит к минимуму расхождения, вызванные вводом информации разными операторами, и обеспечивает постоянную точность, повышая надежность для регулярного подтверждения.

Светодиодное освещение

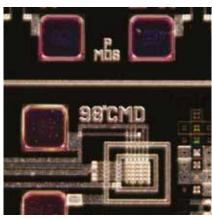

ВХЗМ использует светодиодный источник белого света повышенной яркости как для отраженного, так и для проходящего света. Светодиод поддерживает постоянную цветовую температуру, независимо от интенсивности. Светодиоды обеспечивают эффективное и долговечное освещение, которое идеально подходит для осмотров в целях материаловедения.



Коррекция затененности

Коррекция затененности встроена в программное обеспечение OLYMPUS Stream для компенсации затененности в углах изображения. При использовании вместе с настройками пороговых значений интенсивности коррекция затененности обеспечивает большую точность анализа. Кроме того, при фрагментации изображений с помощью МІА можно получить более однородное панорамное изображение.

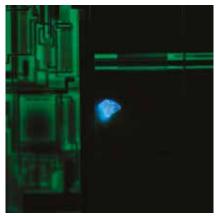
На необработанном снимке видны места соединения изображений.



Коррекция затененности создает равномерное освещение на всем поле обзора.

Применение

Микроскопия в отраженном свете охватывает целый ряд областей применения и отраслей. Здесь представлены отдельные примеры того, чего можно добиться при помощи различных методов наблюдения.


Темное поле

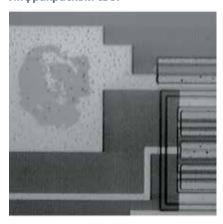
Плата для поверхностного монтажа: DF

Темное поле позволяет проводить наблюдения рассеянного или преломляющегося от образца света. Все неплоские поверхности отражают такой свет, а все плоские поверхности кажутся темными, поэтому все изъяны четко выделяются. Пользователь может определить наличие даже тончайших царапин или трещин толщиной до 8 нм — это меньше предельного значения разрешающей способности оптического микроскопа. Темное поле идеально подходит для обнаружения тончайших царапин или трещин на образце и для осмотра образцов с зеркальной поверхностью, в том числе полупроводниковых пластин.

Флуоресценция

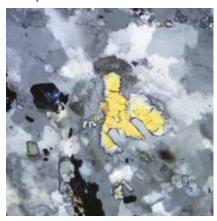
Частица на полупроводниковой пластине: FL

Эта методика применяется для образцов, флуоресцирующих (т. е. излучающих свет с разной длиной волны) при освещении специально разработанным фильтровым кубом, который можно выбрать для конкретного применения. Она подходит для осмотра загрязнений на полупроводниковых пластинах, остатков фоторезисторов и обнаружения трещин путем применения флуоресцирующего красителя. Для компенсации хроматических аберраций от видимого спектра до ближней инфракрасной части спектра можно добавить дополнительный апохроматический сложный объектив с коллекторным корпусом.


дифференциально-интерференционное контрастирование

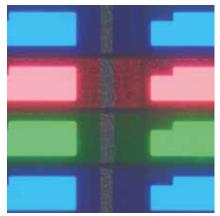
Высокопрочный чугун, травленый: DIC

это методика микроскопического исследования, при использовании которой разница в высоте образцов, не обнаруживаемая в светлом поле, становится рельефным или трехмерным изображением с повышением контрастности. Эта методика использует поляризованный свет и может выбором настроена с специально разработанных призм. Она идеально подходит для изучения образцов с бесконечно малой разницей высот, в том числе металлографических структур, минералов, магнитных головок, жестких дисков и полированных поверхностей полупроводниковых пластин.


Инфракрасный свет

Сечение электрода: ИК

Наблюдение в ИК является предпочтительным методом изучения внутренней части электронных устройств из кремния или стекла, которые легко пропускают свет с длиной волны в ИК, без нарушения структуры.


Поляризованный свет

Серицит: POL

Эта методика микроскопического исследования использует поляризованный свет, источником которого является набор фильтров (анализатор и поляризатор). Характеристики образца напрямую влияют на интенсивность света, который отражается в системе. Она подходит для металлографических структур (т. е. форма роста кристаллов графита или чугуна с шаровидным графитом), минералов, светодиодов и полупроводниковых материалов.

Наблюдение в проходящем свете

Светодиодный цветной фильтр: TL BF + HDR

Для прозрачных образцов, таких как светодиоды, пластмассы и материалы из стекла, доступно наблюдение в естественном проходящем свете при помощи разнообразных конденсоров. Изучение образцов методом светлого поля в проходящем свете и в поляризованном свете можно выполнить в одной универсальной системе.

Полностью настраиваемая

Модульная конструкция делает возможным создание различных конфигураций, которые отвечают требованиям пользователя.

Примеры конфигураций для решения задач материаловедения

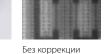
Комбинация отраженного и отраженного/проходящего света ВХ53М

В серии ВХЗМ представлено два типа корпусов микроскопов, один только для отраженного света, а другой как для отраженного, так и для проходящего света. Оба корпуса можно выполнить в конфигурации с ручными, кодированными или моторизованными компонентами. Корпусы оснащены функцией ЭСР для защиты электронных образцов.

Пример конфигурации BX53MRF-S

Пример конфигурации BX53MTRF-S

ИК комбинация ВХ53М


ИК объективы можно использовать с целью осмотра, измерения и обработки полупроводников, где для того, чтобы увидеть характерные структуры, их необходимо визуализировать под слоем кремния. Доступны инфракрасные (ИК) объективы с увеличением от 5X до 100X с коррекцией хроматической аберрации от длины волны видимого спектра до ближней инфракрасной части спектра. Для работы под большим увеличением вращение кольца корректировки линз серии LCPLN-IR вводит поправку на аберрации, обусловленные толщиной образца. Четкое изображение получают с помощью одного объектива.

Объективы	Увеличе- ние	ЧА	Раб. рст. (мм)	Толщина Толщина покровного кремниевой стекла (мм) пластины (мм)		Разреше- ние *1 (мкм)
LMPLN-IR	5X 10X	0,1 0,3	23 18	0-0,17 0-0,17	_	6,71 * ³ 2,24 * ³
LCPLN-IR *2	20X 50X 100X	0,45 0,65 0,85	8,3 4,5 1,2	0-1,2 0-1,2 0-0,7	0-1,2 0-1,2 0-1,0	1,49 * ³ 1,03 * ³ 0,79 * ³

^{*1} Значения разрешения, вычисленные с широко открытой апертурной ирисовой диафрагмой

ИК объективы

Скоррекцией

^{*2} Ограничен FN 22, не совместим с FN 26,5.

^{*3} При использовании 1100 нм.

Комбинация поляризованного света ВX53M

Оптика комбинации поляризованного света ВХ53М предоставляет геологам нужные инструменты для визуализации высокой контрастности поляризованным светом. Для таких областей применения, как определение минералов, изучение оптических свойств кристаллов и осмотр срезов коренных пород, полезны стабильность системы и точная оптическая регулировка.

Линза Бертрана для коноскопического и ортоскопического наблюдения

С помощью приспособления для коноскопического наблюдения U-CPA переключение между ортоскопическим и коноскопическим наблюдением происходит просто и быстро. Оно фокусируется для получения четкой интерференционной картины задней фокальной плоскости. Диафрагма поля Бертрана делает возможным получение постоянно резких и четких коноскопических изображений.

Принадлежности для поляризованного

Коноскопическая/ ортоскопическая конфигурация ВХ53М

Оптика без внутреннего напряжения

Благодаря современной конструкции и технологии производства компании Olympus, объективы UPLFLN-Р без внутреннего напряжения сокращают внутреннюю деформацию до минимума. Это означает более высокое значение EF, что обеспечивает отличную контрастность изображения.

Объективы UPLFLN-Р без внутреннего напряжения

Серия UPI FI N-P

Серия ОРЕГЕН-Р	Серия ОРГ-ГИ-Р							
Объективы	ЧА	Раб.рст.						
UPLFLN 4XP	0,13	17,0 мм						
UPLFLN 10XP	0,3	10,0 мм						
UPLFLN 20XP	0,5	2,1 MM						
UPLFLN 40XP	0,75	0,51 мм						
UPLFLN 100XOP	1,3	0,2 мм						
PLN-P								
Объективы	ЧА	Раб.рст.						
PLN 4XP	0,1	18,5 мм						
Серия ACHN-P								
Объективы	ЧА	Раб.рст.						
ACHN 10XP	0,25	6,0 MM						
ACHN 20XP	0,40	3,0 мм						
ACHN 40XP	0,65	0,45 мм						
ACHN 100XOP	1,25	0,13 мм						

^{*} Все объективы UIS2 и окуляры WHN: экостекло, которое не содержит свинца.

Широкий выбор компенсаторов и волновых пластинок

Для измерения двойного лучепреломления в тонких срезах горной породы и минералов имеются шесть разных компенсаторов. Уровень замедления измерений варьируется от 0 до 20х. Для простоты измерений и высокой контрастности изображений можно использовать компенсаторы Берека и Сенармона, которые изменяют уровень замедления на всем поле обзора.

BX53M

Диапазон измерений компенсаторов

Компенсатор	Диапазон измерений	Применение
Толстый, Берека (U-CTB)	0-11 000 нм (20 λ)	Измерение высокого уровня замедления ($R * > 3\lambda$) (кристаллы, макромолекулы, волокно и т. п.)
Берека (U-CBE)	0-1640 нм (3 λ)	Измерение уровня замедления (кристаллы, макромолекулы, живые организмы и т. п.)
Компенсатор Сенармона (U-CSE)	0-546 нм (1 λ)	Измерение уровня замедления (кристаллы, живые организмы и т. п.) Повышение контрастности изображения (живые организмы и т. п.)
Компенсатор Брейса-Келера 1/10 λ (U-CBR1)	0-55 нм (1/10 λ)	Измерение низкого уровня замедления (живые организмы и т. п.)
Компенсатор Брейса-Келера 1/30 λ (U-CBE2)	0-20 нм (1/30 λ)	Измерение контрастности изображения (живые организмы и т. п.)
Кварцевый клин (U-CWE2)	500-2200 нм (4λ)	Приближенное измерение уровня замедления (кристаллы, макромолекулы и т. п.)

^{*}R = уровень измерения Для более точных измерений рекомендуется использовать компенсаторы (кроме U-CWE2) с интеоференционным фильтоом 45-IF546.

Система ВХҒМ

BXFM можно адаптировать для конкретных областей применения или встроить в другие приборы. Модульная конструкция обеспечивает эффективную адаптацию к уникальным условиям и конфигурациям с целым ассортиментом специальных небольших осветителей и креплений.

Модульная конструкция — создайте свою собственную систему

Корпуса микроскопов

Существуют два корпуса микроскопов для отраженного света; один также с функцией для проходящего света. Чтобы вместить более высокие образцы, для поднятия осветителя имеется адаптер.

: возможные модели		Отраженный свет	Проходящий свет	Высота образца	
1	BX53MRF-S			0-65 мм	
2	BX53MTRF-S			0-35 мм	
1, 3	BX53MRF-S + BX3M-ARMAD			40-105 мм	
2, 3	BX53MTRF-S + BX3M-ARMAD			40-75 мм	

Штативы

Для областей применения микроскопии, где образец не помещается на столик, осветитель и оптику можно разместить на штативе большего размера или на другой единице оборудования.

Конфигурация осветителя ВХFМ + ВХ53М

1	BXFM-F	Модуль подключения корпуса монтируется на стене/опоре 32 мм					
2	- BX3M-ILH	Держатель осветителя					
3	L BXFM-ILHSPU	Амортизирующая пружина для BXFM					
5	LU-ST	Штатив					
6	SZ-STL	Большой штатив					

Конфигурация осветителя BXFM + U-KMAS

1	BXFM-F	Модуль подключения корпуса монтируется на стене/опоре 32 мм
4	BXFM-ILHS	Держатель U-KMAS
5	U-ST	Штатив
6	SZ-STL	Большой штатив

Тубусы

Для визуализации методом микроскопии с помощью окуляров или для просмотра на камере выберите тубусы в зависимости от типа визуализации и положения оператора во время наблюдения.

		FN	Тип	Тип угла	Изображе- ние	Количество устройств диоптри- ческой коррекции
1	U-BI30-2	22	Бинокулярный	Фиксируемый	Перевернутое	1
2	U-TBI-3	22	Бинокулярный	Наклонный	Перевернутое	1
3	U-TR30-2	22	Тринокулярный	Фиксируемый	Перевернутое	1
4	U-TR30IR	22	Тринокулярный для ИК	Фиксируемый	Перевернутое	2
5	U-ETR-4	22	Тринокулярный	Фиксируемый	Прямое	2
6	U-TTR-2	22	Тринокулярный	Наклонный	Перевернутое	2
7	U-SWTR-3	26,5	Тринокулярный	Фиксируемый	Перевернутое	2
8	U-SWETTR-5	26,5	Тринокулярный	Наклонный	Прямое	2
9	U-TLU	22	Одинарный	_	_	_
10	U-TLUIR	22	Одинарный для ИК	_	_	_

Осветители

Осветитель направляет свет на образец в соответствии с выбранным методом наблюдения. Программное обеспечение взаимодействует с кодированными осветителями, чтобы считать положение куба и автоматически определить метод наблюдения.

	возможные модели	Кодированная функция	Источник света	BF	DF	DIC	POL	ИК	FL	MIX	AS/FS
1	BX3M-RLAS-S	Фиксированное 3 положение куба	Светодиод — встроенный								
			Светодиод								
2	BX3M-URAS-S	Накладное 4 положение куба	Галогеновый источник								
			Ртутный источник/световод								
3	BX3M-RLA-S	5	Светодиод								
3	BX3IVI-RLA-S		Галогеновый источник								
4	BX3M-KMA-S		Светодиод — встроенный								
5	BX3-ARM	Механическая консоль для проходящего света									
6	U-KMAS		Светодиод								
	U-NIVIA3		Галогеновый источник								

Источники света

Источники света и блоки питания для освещения образцов: выберите соответствующий методу наблюдения источник света.

Стандартная конфигурация светодиодного источника света

1	BX3M-LEDR	Корпус светодиодной лампы отраженного света
2	L U-RCV	При необходимости конвертер DF для BX3M-URAS-S требуется для наблюдения с помощью DF и BF.
3	BX3M-PSLED	Блок питания для корпуса светодиодной лампы, требуется система BXFM.
4	BX3M-LEDT	Корпус светодиодной лампы проходящего света

Конфигурация флуоресцентного источника света

5	U-LLGAD	Адаптер световода
2	L U-RCV	При необходимости конвертер DF для BX3M-URAS-S требуется для наблюдения с помощью DF и BF.
6, 7	U-LLG150 (300)	Световод, длина: 1,5 м (3 м)
8	LU-HGLGPS	Источник света для флуоресценции
9, 10	U-LH100HG(HGAPO)	Корпус ртутной лампы для флуоресценции
2	L _{U-RCV}	При необходимости конвертер DF для BX3M-URAS-S требуется для наблюдения с помощью DF и BF.
11	U-RFL-T	Блок питания для ртутной лампы мощностью 100 Вт

Конфигурация галогенового и галогенового источника света для ИК

12	U-LH100L-3	Корпус галогеновой лампы						
13	U-LH100IR	Корпус галогеновой лампы для ИК						
14	L _{U-RMT}	Удлинитель кабеля для корпуса галогеновой лампы, длина кабеля 1,7 г (удлинение кабеля требуется при необходимости)						
15, 16	TH4-100 (200)	Блок питания на 100 В (200 В) для галогеновой лампы мощностью 100/50 Вт						
17	L _{TH4-HS}	Ручной переключатель интенсивности света галогена (регулятор освещения ТН4-100 (200) без ручного переключателя)						

Головки

Приспособление для объективов и слайдеров. Выбирайте в зависимости от количества требуемых объективов и их типа; а также использование со слайдером или без него.

	: возможные модели	Тип	От- вер- стий	BF	DF	DIC	MIX	ESD	Количество центрирующих отверстий
1	U-P4RE	Ручная	4						4
2	U-5RE-2	Ручная	5						
3	U-5RES-ESD	Кодированная	5						
4	U-D6RE	Ручная	6						
5	U-D6RE-ESD-2	Ручная	6						
6	U-P6RE	Ручная	6						2
7	U-D7RE	Ручная	7						
8	U-D6RES	Кодированная	6						
9	U-D7RES	Кодированная	7						
10	U-D5BDREMC	Механическая	5						
11	U-5BDRE	Ручная	5						
12	U-D5BDRE	Ручная	5						
13	U-P5BDRE	Ручная	5						2
14	U-D6BDRE	Ручная	6						
15	U-D5BDRES-ESD	Кодированная	5						
16	U-D6BDRES-S	Кодированная	6						
17	U-D6REMC	Механическая	6						
18	U-D6BDREMC	Механическая	6						

Слайдеры

Выберите слайдер, чтобы улучшить традиционное наблюдение методом светлого поля. Слайдер DIC предоставляет топографические сведения об образце с возможностью максимально увеличить контрастность или разрешение. Слайдер MIX предусматривает возможности гибкого управления освещением с сегментированным светодиодным источником в темном поле.

		Тип	Степень сдвига	Доступные объективы
1	U-DICR	Стандартный	Средняя	MPLFLN, MPLAPON, LMPLFLN и LCPLFLN-LCD
2	U-DICRH	Разрешение	Небольшая	MPLFLN, MPLAPON
3	U-DICRHC	Контрастность	Большая	LMPLFLN и LCPLFLN-LCD

Слайдер MIX для наблюдения MIX.

		Тип	Доступные объективы
4	U-MIXR	Слайдер MIX	MPLFLN-BD, LMPLFLN-BD, MPLN-BD

Блоки управления и ручные переключатели

Блоки управления для взаимодействия оборудования микроскопа с ПК и ручные переключатели для отображения и управления оборудованием.

Конфигурация ВХЗМ-СВ (СВҒМ)

	 •	
1	BX3M-CB	Блок управления системой BX53M
2	BX3M-CBFM	Блок управления системой BXFM
3	_ BX3M-HS	Управление наблюдением MIX, индикатор кодированного оборудования, программируемая функциональная кнопка для программного обеспечения (Stream)
4	- BX3M-HSRE	Вращение механической головки
5	L U-HSEXP	Управление затвором камеры

Конфигурация U-CBS

6	U-CBS	Блок управления кодированными функциями в конфигурации BXFM
5	L U-HSEXP	Управление затвором камеры

Кабель

паосль	NUCLE				
-	U-MIXRCBL (ECBL)	Кабель U-MIXR, длина кабеля: 0,5 м (2,9 м)			
	BX3M-RMCBL (ECBL)	Кабель для механической головки, длина кабеля: 0,2 м (2,9 м)			

Столики

Столики и пластины столиков для размещения образцов. Сделайте выбор в зависимости от формы и размера образца.

Конфигурация столика размером 150 мм imes 100 мм

1	U-SIC64	Плоский столик размером 150 мм × 100 мм с рукояткой
2	Lu-SHG (T)	Резиновая прокладка для повышения удобства рабочей рукоятки из силиконового каучука (толстая)
3	—U-SP64	Пластина столика для U-SIC64
4	U-WHP64	Пластина для полупроводниковых пластин для U-SIC64
5	BH2-WHR43	Держатель полупроводниковых пластин на 4–3 дюйма
6	—BH2-WHR54	Держатель полупроводниковых пластин на 5–4 дюйма.
7	□BH2-WHR65	Держатель полупроводниковых пластин на 6–5 дюймов
8	LU-SPG64	Стеклянная пластина для U-SIC64

Конфигурация столика размером 100 мм imes 100 мм

9, 10	U-SIC4R (L) 2	Столик размером 100 мм × 105 мм с правой (левой) рукояткой
11	U-MSSP4	Пластина столика для U-SIC4R (L) 2
12	U-WHP2	Пластина для полупроводниковых пластин для U-SIC4R (L) 2
6	□BH2-WHR43	Держатель полупроводниковых пластин на 4–3 дюйма
13	LU-MSSPG	Стеклянная пластина для U-SIC4R

Конфигурация столика размером 76 мм imes 52 мм

14, 15	U-SVR (L) M	Столик размером 76 мм × 52 мм с правой (левой) рукояткой
2	U-SHG (T)	Резиновая прокладка для повышения удобства рабочей рукоятки из силиконового каучука (толстая)
16	— U-MSSP	Пластина столика для U-SVR (/L) М
17, 18	—U-HR (L) D-4	Тонкий штатив-рамка с отверстием справа (слева)
19, 20	L _{U-HR} (L) DT-4	Толстый штатив-рамка с отверстием справа (слева), чтобы прижимать предметное стекло к поверхности столика, если образец сложно поднимать

Другие

21	U-SRG	Вращающийся столик
22	U-SRP	Вращающийся столик для POL, в любом положении можно зафиксировать со щелчком под углом 45
23	L-U-FMP	Механический столик для U-SRP/U-SRG
24	U-SP	Фиксированный столик с одной пластиной

Адаптеры камер

Адаптеры для просмотра на камере. Можно выбирать в зависимости от нужного поля обзора и увеличения. Фактический диапазон наблюдения можно вычислить по формуле: фактическое поле обзора (по диагонали в мм) = поле зрения (номер поля) + увеличение объектива.

			Регулировка центрирования	Область ПЗС изображения (номер поля) (мм)		
			(MM)	2/3 дюйма	1/1,8 дюйма	1/2 дюйма
1	U-TV1X-2 c U-CMAD3-2	1	_	10,7	8,8	8
2	U-TV1XC	1	ø2	10,7	8,8	8
3	U-TV0.63XC	0,63	_	17	14	12,7
4	U-TV0.5XC-3	0,5	_	21,4	17,6	16
5	U-TV0.35XC-2	0,35	_	_	_	22
6	U-TV0.25XC	0,25	_	_	_	_

Для получения информации о цифровых камерах посетите наш веб-сайт по адресу: http://www.olympus-ims.com/en/microscope/dc/.

Окуляры

Окуляр для прямого просмотра через микроскоп. Сделайте выбор в соответствии с требуемым полем обзора.

возможные модели		FN (мм)	Устройство диоптриче- ской коррекции	Встроенное обозначение перекрестия
1	WHN10X	22		
2	WHN10X-H	22		
3	CROSS WHN10X	22		
4	SWH10X-H	26,5		
5	CROSS SWH10X	26,5		

Оптические фильтры

Оптические фильтры преобразуют излучение при экспозиции образца в различные виды освещения. Выберите фильтр, соответствующий требованиям наблюдения.

BF, DF, FL

1, 2, 3	U-25ND50, 25, 6	Нейтральный светофильтр, пропускающая способность 50, 25, 6 %
4	U-25LBD	Цветной фильтр дневного света
5	U-25LBA	Галогеновый цветной фильтр
6	U-25IF550	Зеленый светофильтр
7	U-25L42	Фильтр блокировки ультрафиолетового излучения
8	U-25Y48	Желтый светофильтр
9	U-25FR	Фильтр размытия (необходим для BX3M-URA)

POL, DIC

10	U-AN-2	Направление поляризации зафиксировано
11	U-AN360-3	Направление поляризации можно поворачивать
12	U-AN360P-2	Направление высококачественной поляризации можно поворачивать
13	U-PO3	Направление поляризации зафиксировано
14	U-POTP3	Направление поляризации зафиксировано, для применения с U-DICRH
15	45-IF546	Зеленый светофильтр ø45 для POL

Другие

22	U-25	Пустой фильтр, для применения с пользовательскими фильтрами ø25 мм
23	U-FC	Кассета для фильтров проходящего света, применяется для комбинирования фильтров ø45 мм

ИΚ

16	U-AN360IR	Направление ИК поляризации можно поворачивать (сокращает ореолообразование во время наблюдения в ИК при использовании в комбинации с U-AN360IR и U-POIR)
17	U-POIR	Направление ИК поляризации зафиксировано
18	U-BP1100IR	Полосовой фильтр: 1100 нм
19	U-BP1200IR	Полосовой фильтр: 1200 нм

Проходящий свет

-	- F FI		
	20	43IF550-W45	Зеленый светофильтр ø45 мм
Ī	21	U-POT	Фильтр поляризатора

● При использовании BX3M-RLAS-S и U-FDICR AN и PO не требуются.

Конденсоры

Конденсоры собирают и фокусируют проходящий свет. Используйте для наблюдений в проходящем свете.

1	U-AC2	Конденсор Аббе (подходит для объективов с увеличением 5Х и выше)
2	U-SC3	Поворотно-откидной конденсор (подходит для объективов с увеличением 1,25X и выше)
3	U-LWCD	Конденсор с большим рабочим расстоянием для стеклянных пластин (U-MSSPG, U-SPG64)
4	U-POC-2	Поворотно-откидной конденсор для POL

Модули зеркал

Модуль зеркал для BX3M-URAS-S. Выберите модуль в соответствии с методом наблюдения.

1	U-FBF	Для BF, съемный фильтр ND
2	U-FDF	Для DF
3	U-FDICR	Для POL, положение скрещенной призмы Николя зафиксировано
4	U-FBFL	Для BF, встроенный фильтр ND (необходим для использования как BF *, так и FL)
5	U-FWUS	Для ультрафиолетового FL: BP330-385 BA420 DM400
6	U-FWBS	Для синего FL: BP460-490 BA520IF DM500
7	U-FWGS	Для зеленого FL: BP510-550 BA590 DM570
8	U-FF	Пустой модуль зеркал

Промежуточные тубусы

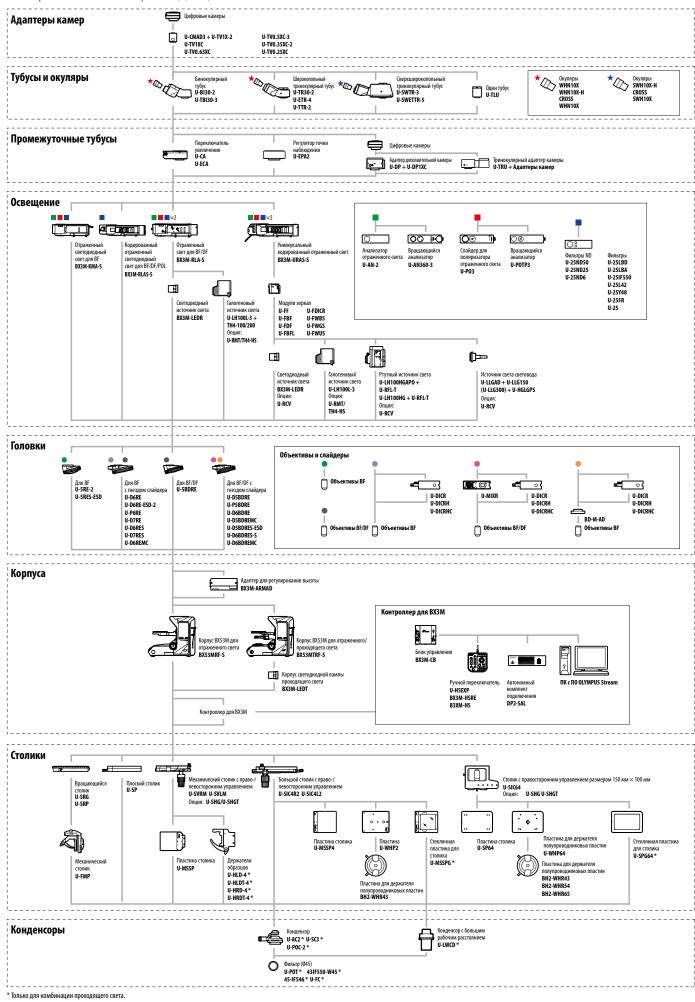
Разные виды принадлежностей для различных целей. Для использования между тубусом и осветителем.

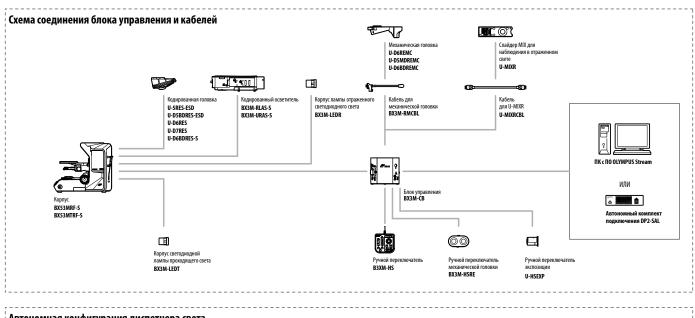
1	U-CA	Переключатель увеличения (1X; 1,25X; 1,6X; 2X)
2	U-ECA	Переключатель увеличения (1X, 2X)
3	U-EPA2	Регулятор точки наблюдения: +30 мм
4	U-DP	Двойной порт для U-DP1XC
5	U-DP1XC	Адаптер для C-образного крепления ТВ камеры для U-DP
6	U-TRU	Тринокулярный промежуточный блок

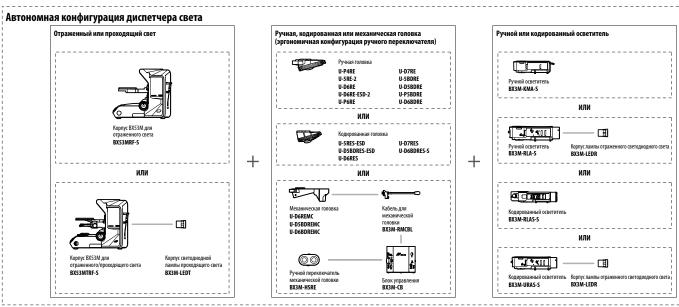
Объективы UIS2

Объективы увеличивают образец. Выберите объектив, соответствующий рабочему расстоянию, разрешающей способности и методу наблюдения для нужной области применения.

Объективы		Увеличение	ЧА	Раб. рст. (мм)	Толщина покровного стекла * ³ (мм)	Разреше- ние * ⁴ (мкм)
MPLAPON	1 2	50X 100X	0,95 0,95	0,35 0,35	0	0,35 0,35
MPLFLN	3 4 5 6 7 8 9	1,25X *5, *6 2,5X *6 5X 10X 20X 40X *2 50X 100X	0,04 0,08 0,15 0,30 0,45 0,75 0,80 0,90	3,5 10,7 20,0 11,0 3,1 0,63 1,0 1,0	0-0,17 0-0,17 0-0,17 0-0,17 0 0 0	8,39 4,19 2,24 1,12 0,75 0,45 0,42 0,37
SLMPLN	11 12 13	20X 50X 100X	0,25 0,35 0,6	25 18 7,6	0-0,17 0 0	1,34 0,96 0,56
LMPLFLN	14 15 16 17 18	5X 10X 20X 50X 100X	0,13 0,25 0,40 0,50 0,80	22,5 21,0 12,0 10,6 3,4	0-0,17 0-0,17 0 0	2,58 1,34 0,84 0,67 0,42
MPLN *5	19 20 21 22 23	5X 10X 20X 50X 100X	0,10 0,25 0,40 0,75 0,90	20,0 10,6 1,3 0,38 0,21	0-0,17 0-0,17 0 0	3,36 1,34 0,84 0,45 0,37
LCPLFLN-LCD	24 25 26	20X 50X 100X	0,45 0,70 0,85	8,3-7,4 3,0-2,2 1,2-0,9	0-1,2 0-1,2 0-0,7	0,75 0,48 0,39
MPLFLN-BD *7	27 28 29 30 31 32	5X 10X 20X 50X 100X 150X	0,15 0,30 0,45 0,80 0,90 0,90	12,0 6,5 3,0 1,0 1,0	0-0,17 0-0,17 0 0 0	2,24 1,12 0,75 0,42 0,37 0,37
MPLFLN-BDP * ⁷	33 34 35 36 37	5X 10X 20X 50X 100X	0,15 0,25 0,40 0,75 0,90	12,0 6,5 3,0 1,0	0-0,17 0-0,17 0 0	2,24 1,34 0,84 0,45 0,37
LMPLFLN-BD * ⁷	38 39 40 41 42	5X 10X 20X 50X 100X	0,13 0,25 0,40 0,50 0,80	15,0 10,0 12,0 10,6 3,3	0-0,17 0-0,17 0 0	2,58 1,34 0,84 0,67 0,42
MPLN-BD *5, *7, *8	43 44 45 46 47	5X 10X 20X 50X 100X	0,10 0,25 0,40 0,75 0,90	12,0 6,5 1,3 0,38 0,21	0-0,17 0-0,17 0 0	3,36 1,34 0,84 0,45 0,37
MPLAPON		100X, масло *1	1,4	0,1	0	0,24




- *1 Указанное масло: IMMOIL-F30CC.
- *2 Объектив MPLFLN40X не совместим с микроскопией методом дифференциальноинтерференционного контрастирования.
- *3 0: для просмотра образцов без покровного стекла.
- *4 Значения разрешения, вычисленные с широко открытой апертурной ирисовой диафрагмой.
- *5 Ограничен FN 22, не соответствует FN 26,5.
- *6 С MPLFLN1.25X и 2.5X рекомендуется использовать анализатор и поляризатор.
- ВD: объективы для микроскопии в светлом/темном поле.
- *8 При использовании объективов серии MPLN-BD с источниками света повышенной яркости, такими как ртутный или ксеноновый при выполнении наблюдения в темном поле, по контуру поля возможно проявление виньетирования.


■ Определения сокращений в обозначении объектива

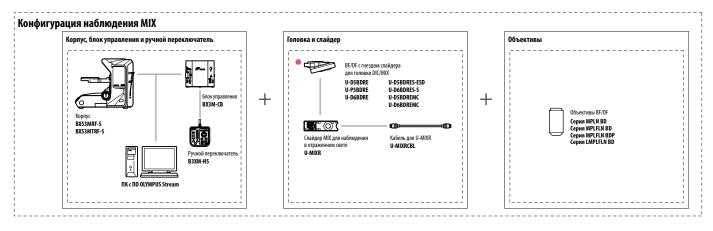
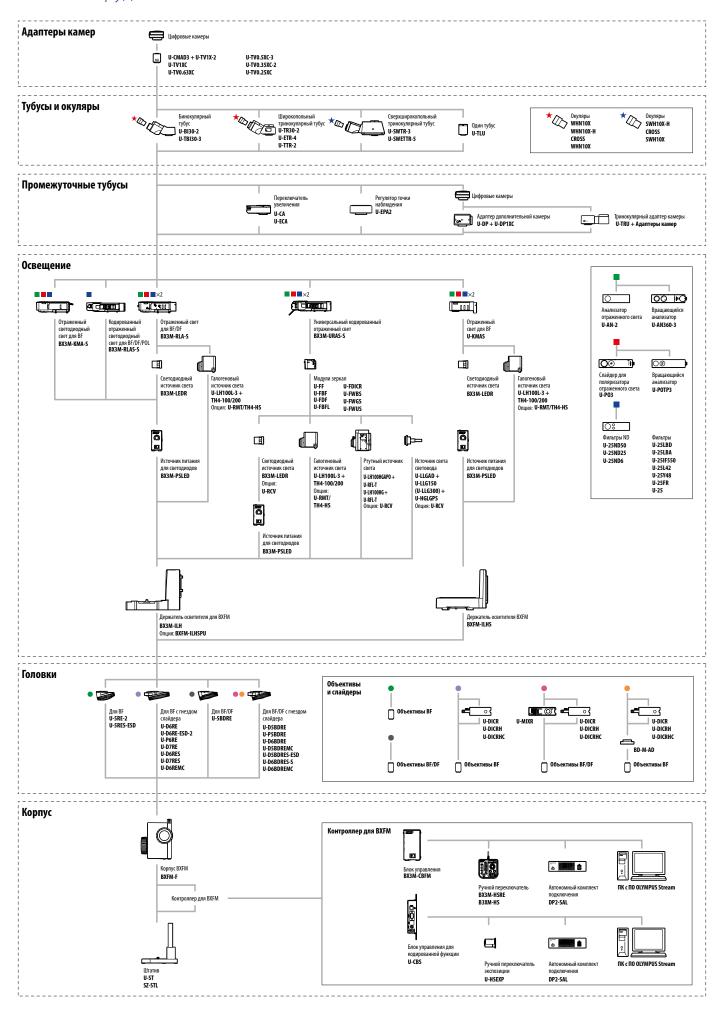
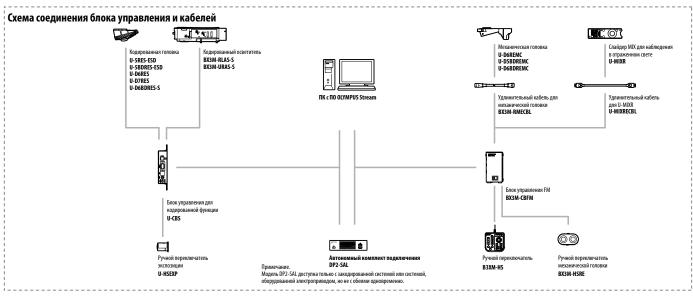
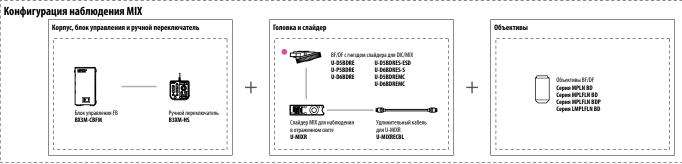


Схема оборудования ВХ53М (для комбинации отраженного и отраженного/проходящего света)







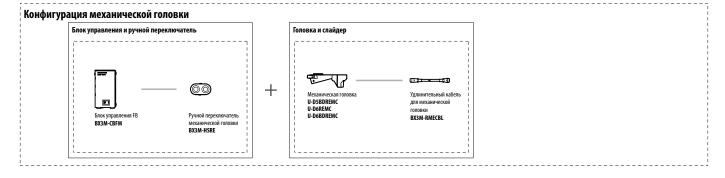
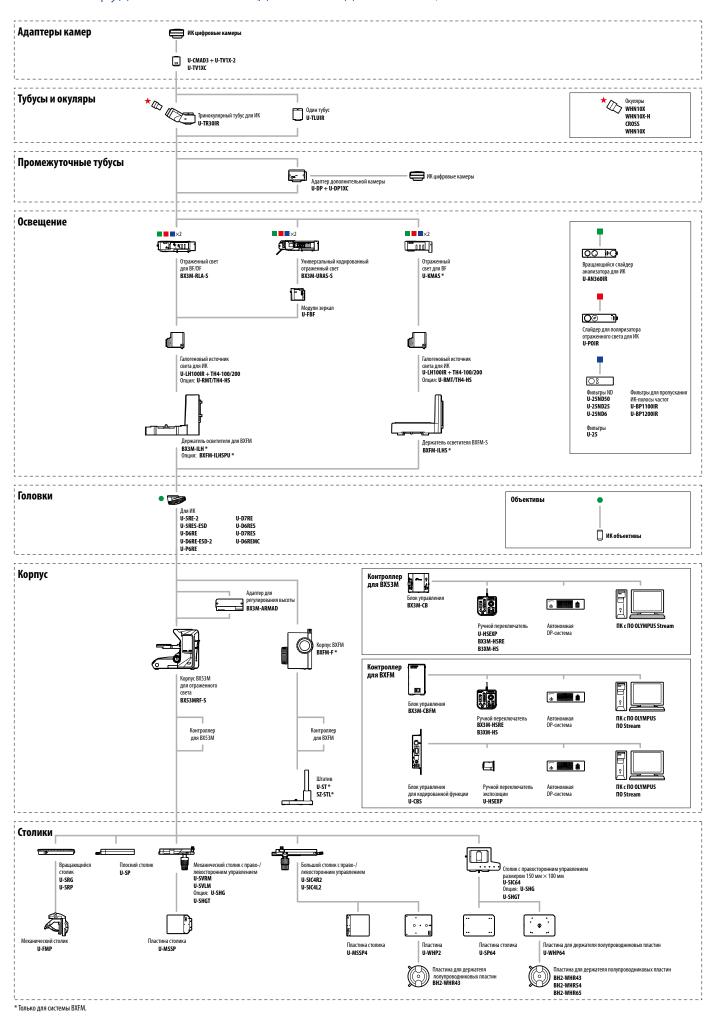


Схема оборудования ВХҒМ



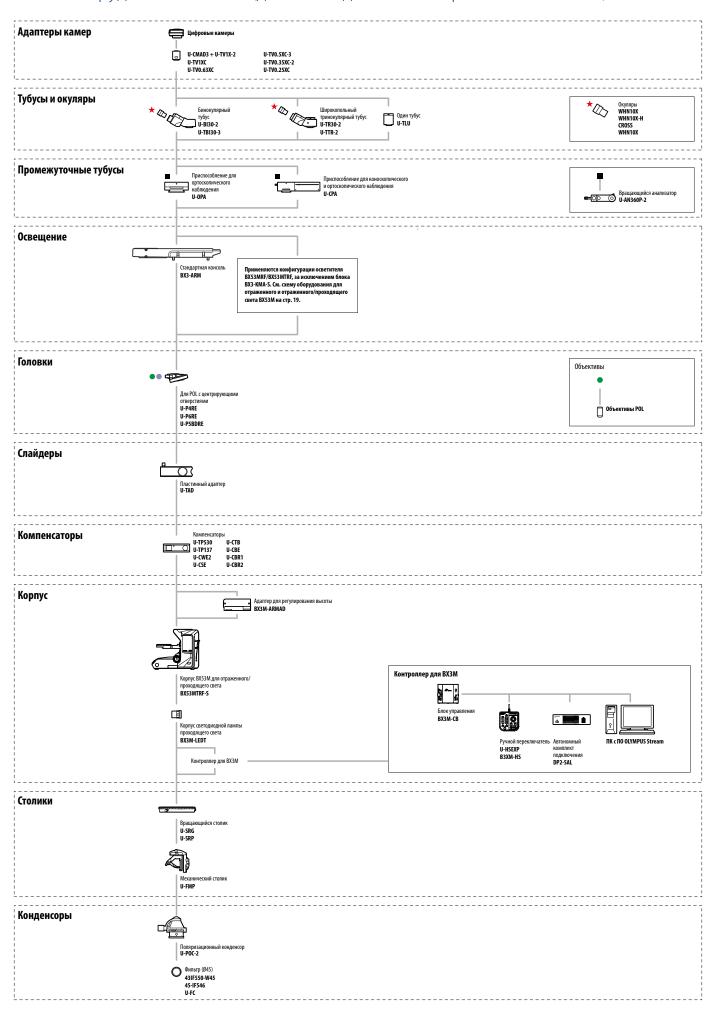


Схема оборудования ВХ53М (для наблюдения в ИК)

Схема оборудования ВХ53М (для наблюдения в поляризованном свете)

Технические характеристики ВХ53М (для комбинации отраженного и отраженного/проходящего света)

		BX53MTRF-S	BX53MRF-S	BXFM
Оптическая система		Оптическая система UIS2 (с бесконечно	ий функцией коррекции)	
	Освещение	Отраженный/проходящий	Отраженный	
Корпус микроскопа	Фокус	Ход: 25 мм Точная величина хода за один оборот: 1 Минимальная градуировка: 1 мкм С ограничителем верхнего предела, регрукоятки грубой настройки		Ход: 30 мм Точная величина хода за один оборот: 200 мкм Минимальная градуировка: 2 мкм С регулировкой вращающего момента для рукоятки грубой настройки
	Макс. высота образца	35 мм (без прокладки) 75 мм (с BX3M-ARMAD)	65 мм (без прокладки) 105 мм (с BX3M-ARMAD)	Зависит от конфигурации размещения
Tubuc and upbalancium	Широкопольный FN 22	Инвертированный: бинокулярный, трин Прямой: тринокулярный, бинокулярный		
Тубус для наблюдений	Сверхширокопольный FN 26,5	Инвертированный: тринокулярный Прямой: тринокулярный, тринокулярный, тринокулярны	ій с наклоном	
	Традиционная методика наблюдения	BX3M-KMA-S Белый светодиод, BF/DIC/POL/MIX FS, BX3M-RLA-S	DF/DIC/POL/MIX FS, AS (с центрирующим у . AS (с центрирующим устройством), взаим 0 Вт, белый светодиод, BF/DF/DIC/POL/MIX	иоблокировка BF/DF
Освещение отраженным светом		-	_	U-KMAS Белый светодиод, галоген мощно- стью 100 Вт Волоконное освещение, BF/DIC/ POL/MIX
	Флуоресценция	BX3M-URAS-S Кодированная ртутная лампа мощно C FS, AS (с центрирующим устройство	стью 100 Вт, 4-позиционная турель модуля ом) с механизмом затвора	я зеркал (стандарт: WB, WG, WU+BF и т. д.)
Проходящий свет		Белый светодиод Конденсоры Аббе/с большим рабочим расстоянием		_
Вороди рорина годориа	Для BF	Шестикратная, центрирующая шестикроревольверные головки)	атная, семикратная, кодированная пятикр	ратная (дополнительные механические
Револьверная головка	Для BF/DF	Шестикратная, пятикратная, центрирую револьверные головки)	щая пятикратная, кодированная пятикрат	гная (дополнительные механические
Столик (Х × Y)		Столик с левой (правой) коаксиальной 76 мм × 52 мм, с регулировкой враща Большой столик с левой (правой) коакс 100 мм × 105 мм, с механизмом блоки Большой столик с правой коаксиальной 50 мм × 100 мм, с регулировкой враш блокировки по оси У	нощего момента киальной рукояткой: ировки по оси Y й рукояткой:	_
Macca		Прибл. 18,3 кг (корпус микроскопа 7,6 кг)	Прибл. 15,8 кг (корпус микроскопа 7,4 кг)	Прибл. 11,1 кг (корпус микроскопа 1,9 кг)

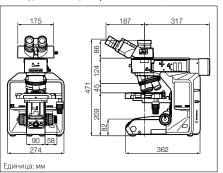
Технические характеристики ВХ53М (для наблюдений в ИК)

		BX53MRF-S	BXFM
Тубус для наблюдений в ИК	Широкопольный FN 22	Инвертированный: тринокулярный	
Освещение отраженным светом	Наблюдение в ИК	BX3M-RLA-S Галогеновая лампа мощностью 100/50 Вт для ИК, ВF/ИК, AS (1100, 1200 нм) BX3M-URAS-S Галогеновая лампа мощностью 100/50 Вт для ИК, ВF/ИК, AS (1100, 1200 нм) и механизмом затвора	
		_	U-KMAS Галоген мощностью 100/50 Вт для ИК, ВF/ИК
Револьверная головка	Для BF	Шестикратная, центрирующая шестикратная, семикратная, к револьверные головки)	одированная пятикратная (дополнительные механические
Столик (X × Y)		Столик с левой (правой) коаксиальной рукояткой: 76 мм × 52 мм, с регулировкой вращающего момента Большой столик с левой (правой) коаксиальной рукояткой: 100 мм × 105 мм, с механизмом блокировки по оси Y Большой столик с правой коаксиальной рукояткой: 150 мм × 100 мм, с регулировкой вращающего момента и механизмом блокировки по оси Y	-
Macca		Прибл. 18,9 кг (корпус микроскопа 7,4 кг)	Прибл. 11,6 кг (корпус микроскопа 1,9 кг)

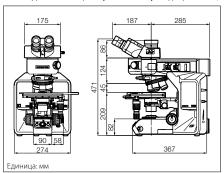
Технические характеристики ВХ53М (для наблюдений в поляризованном свете)

Промежуточная насадка для поля Бертрана (полько U-CPA) Прамой: тринокулярный, бинокулярный с наклоном Прамой: тринокулярный, бинокулярный с наклоном Прамой: тринокулярный, бинокулярный с наклоном Прамой: тринокулярный с наклоном Поляризованного света (полько U-CPA) Праключение пли за праключение пли отключение переключение или отключение переключение или отключение преключение пли за править между ортоскопическим (полько U-CPA) Прамой: тринокулярный с полько и U-CPA или U-OPA) Прамой: тринокулярный с наклоном Прамой: тринокулярный (полько и-CPA) Прамой: тринокулярный (полько и-CPA) Прамой: тринокулярный (полько и-CPA) Прамой: тринокулярный (полько и-CPA) Прамой: тринокулярный (полько и-и-СPA) Прамой: тринокулярный (полько и-и-и-и-и-и-и-и-и-и-и-и-и-и-и-и-и-и-и-			BX53MTRF-S	
Промежуточная насадка для поля Бертрана (голько U-CPA) Диаметр е3.4 мм (фиксированный) Диаметр е3.4 мм (фиксированный) Поляризованного света (U-CPA или U-OPA) Подключение или отключение Переключение линзы Бертрана между ортоскогическим и коноскопическим и коноскопическим (голько U-CPA) Положение слайдера ● подключено подклю		Широкопольный FN 22		ярный с наклоном
только U-CPA) Тоджлючение или отключение Переключение или отключение Переключение линзы Бертрана между ортоскопическии консоскопическии наблюдением (только U-CPA) Тенездо анализатора Вращающийся анализатор с гнездом (U-AN360P-2) Вращают по кругу на 360 Минимальный угол вращения 0,1 Четырежкратная, центрируемые накладные компоненты: пластину замедления на 1/4 длины волны (U-TAD), форму для печатания растрового фона (U-FP530) и различные компенентаторы можно подключить при помощи пластинного адаптера (U-TAD) Толяризационный вращающийся столик с функцией центрирования по 3 точкам Вращение на 360°, фиксация в любом положении, 360 с шагом 1 (минимальное разрешение замедления 6, с использованием нониусной шкалы) Функции фиксации с и шентимо плау углом 45 Можно прикрепить механический столик (U-FMP) Конденсор (U-POC-2) Конденсор (U-POC-2) Конденсор (U-POC-2) Конденсор (U-POC-2) Конденсор (U-POC-2)			Фокусируемая	
(U-CPA или U-OPA) Подключение или отключение переключение пинзы Берграна между ортоскопическим наблюдением (только U-CPA) Положение слайдера	. ,		Диаметр ø3,4 мм (фиксированный)	
Анализатор (U-AN360P-2) Вращается по кругу на 360 Минимальный угол вращения 0,1 Четырежкратная, центрируемые накладные компоненты: пластину замедления на 1/4 длины волны (U-TAD), форму для печатания растрового фона (U-TP530) и различные компенсаторы можно подключить при помощи пластинного адаптера (U-TAD) Толяризационный вращающийся столик с функцией центрирования по 3 точкам Вращение на 360°, фиксация в любом положении, 360 с шагом 1 (минимальное разрешение замедления 6', с использованием нониусной шкалы) Функция фиксации со щеликом под углом 45 Можно прикрепить механический столик (U-FMP) Конденсор (U-POC-2) Конденсор (U-POC-2) Ахроматический конденсор без внутренних напряжений (U-POC-2), вращающийся на 360° поляризатор с поворотно кидной ахроматической верхней линзой Фиксация со щелчком в положении «О» регулируется ЧА 0,9 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вытащена) Апертурная ирисовая диафрагма: диаметр регулируется в диапазоне от 2 до 21 мм		отключение Переключение линзы Бертрана между ортоскопи- ческим и коноскопическим наблюдением		
Минимальный угол вращения 0,1 Четырехкратная, центрируемые накладные компоненты: пластину замедления на 1/4 длины волны (U-TAD), форму для печатания растрового фона (U-TP530) и различные компенсаторы можно подключить при помощи пластинного адаптера (U-TAD) Поляризационный вращающийся столик с функцией центрирования по 3 точкам Вращение на 360°, фиксация в любом положении, 360 с шагом 1 (минимальное разрешение замедления 6', с использованием нониусной шкалы) Функция фиксации со щелчком под углом 45 Можно прикрепить механический столик (U-FMP) Конденсор (U-POC-2) Конденсор (U-POC-2) Конденсор (U-POC-2) Ахроматический конденсор без внутренних напряжений (U-POC-2), вращающийся на 360° поляризатор с поворотно кидной ахроматической верхней линзой Фиксация со щелчком в положении «0» регулируется ЧА 0,9 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вытащена) Апертурная ирисовая диафрагма: диаметр регулируется в диапазоне от 2 до 21 мм		Гнездо анализатора	Вращающийся анализатор с гнездом (U-AN360P-2)	
Револьверная центрируемая головка (U-P4RE) форму для печатания растрового фона (U-TP530) и различные компенсаторы можно подключить при помощи пластинного адаптера (U-TAD) Поляризационный вращающийся столик с функцией центрирования по 3 точкам Вращение на 360°, фиксация в любом положении, 360 с шагом 1 (минимальное разрешение замедления 6, с использованием нониусной шкалы) Функция фиксации со щелчком под углом 45 Можно прикрепить механический столик (U-FMP) Ахроматический конденсор без внутренних напряжений (U-POC-2), вращающийся на 360° поляризатор с поворотно кидной ахроматической верхней линзой Фиксация со щелчком в положении «О» регулируется ЧА 0,9 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вытащена) Апертурная ирисовая диафрагма: диаметр регулируется в диапазоне от 2 до 21 мм	Анализатор (U-AN360P-2)			
Вращение на 360°, фиксация в любом положении, 360 с шагом 1 (минимальное разрешение замедления 6, с использованием нониусной шкалы) Функция фиксации со щелчком под углом 45 Можно прикрепить механический столик (U-FMP) Ахроматический конденсор без внутренних напряжений (U-POC-2), вращающийся на 360° поляризатор с поворотно кидной ахроматической верхней линзой Фиксация со щелчком в положении «0» регулируется ЧА 0,9 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вытащена) Апертурная ирисовая диафрагма: диаметр регулируется в диапазоне от 2 до 21 мм	Револьверная центрируемая	ı головка (U-P4RE)	форму для печатания растрового фона (U-TP530) и различнь	
кидной ахроматической верхней линзой Фиксация со щелчком в положении «0» регулируется ЧА 0,9 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вытащена) Апертурная ирисовая диафрагма: диаметр регулируется в диапазоне от 2 до 21 мм	Столик (U-SRP)		Вращение на 360°, фиксация в любом положении, 360 с шаг (минимальное разрешение замедления 6', с использованием Функция фиксации со щелчком под углом 45	ом 1
Marco	Конденсор (U-POC-2)		кидной ахроматической верхней линзой Фиксация со щелчком в положении «О» регулируется ЧА 0,9 (верхняя линза вставлена) ЧА 0,18 (верхняя линза вытащена)	
масса приол. 16,2 кг (корпус микроскопа 7,0 кг)	Macca		Прибл. 16,2 кг (корпус микроскопа 7,6 кг)	

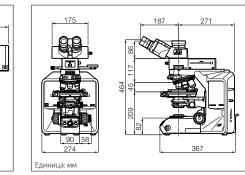
Модули ESD BX53M/BXFM

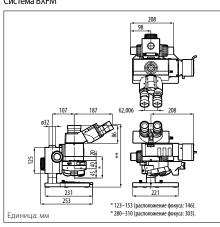

Головка: U-D6BDRES-S, U-D6RE-ESD, U-D5BDREMC-ESD, U-5RES-ESD Столик: U-SIC4R2, U-SIC4L2, U-MSSP4

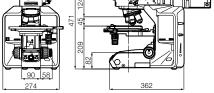
Размеры


ВХ53М (для наблюдения в ИК)

Единица: мм


ВХ53М (для комбинации отраженного света)


ВХ53М (для комбинации отраженного/проходящего света)



ВХ53М (для наблюдения в поляризованном свете)

Система BXFM

Компания OLYMPUS предлагает большой ассортимент продукции для материаловедения и промышленной микроскопии. Дополнительные сведения о цифровом микроскопе серии DSX и трехмерном измерительном лазерном микроскопе LEXT представлены на нашем веб-сайте: www.olympus-ims.com.

Трехмерный измерительный лазерный микроскоп LEXT

С помощью лазерного сканирующего микроскопа Olympus LEXT легко проводить бесконтактные объемные наблюдения и измерения особенностей поверхности при разрешении в 10 нанометров.

Цифровой микроскоп DSX

Передовые цифровые технологии DSX обеспечивают превосходное качество изображений при исключительной простоте применения, что идеально подходит для пользователей любого уровня подготовки. Интеллектуальный интерфейс DSX такой же простой, как интерфейс смартфона или планшета, и обеспечивается гарантированной точностью и воспроизводимостью двух- и трехмерных измерений.

- Корпорация OLYMPUS CORPORATION сертифицирована по стандарту ISO14001.
- Корпорация OLYMPUS CORPORATION сертифицирована по стандарту ISO9001.

117342, Москва, ул. Обручева, д. 34/63, стр. 2 Тел./факс: +7 (495) 781-07-85 info@melytec.ru

192029, Санкт-Петербург, ул. Бабушкина, д. 3, лит. А, оф. 615 . Тел./факс: +7 (812) 380-84-85 infospb@melytec.ru

620075, Екатеринбург, ул. Тургенева, д. 18, оф. 701 Тел./факс: +7 (343) 287-12-85 infoural@melytec.ru

03067, Киев, б-р Лепсе, д. 4, корп. 1, оф. 308 Тел.: +38 (044) 454-05-90 Факс: +38 (044) 454-05-95 infoua@melytec.ru

